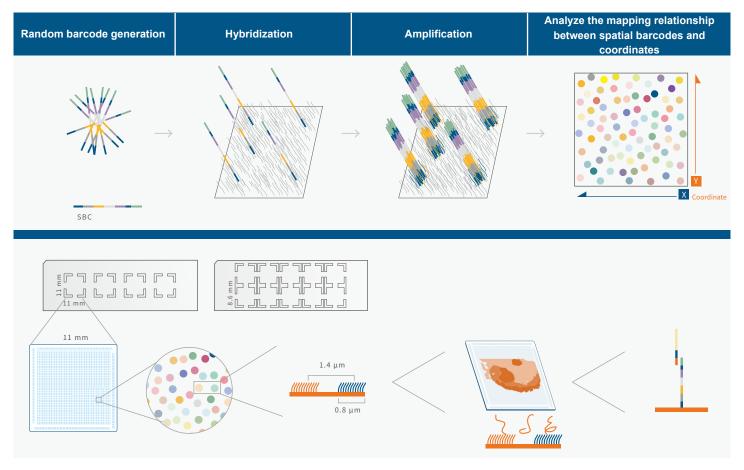

Salus赛陆医疗

Salus Spatial Transcriptomic Solution


The Salus Spatial Transcriptomic Solution (Salus STS) is a powerful genomics research tool that includes ultra-high-density chips, a gene sequencer, a tissue biochemistry workstation, and a data analysis toolkit.

Salus STS enables researchers to accurately and efficiently obtain spatial gene expression data from tissues at subcellular resolution.

Salus Spatial Transcriptomic

Spatial Transcriptomic (ST) Chip for mRNA capture and spatial localization at 1.4 µm resolution

Key Features

Subcellular Resolution

The maximum resolution of ~1 µm can provide subcellular spatial locations.

Flexible Capture Area

Providing 1-10 sample capturing area that can be used simultaneously or separately.

High Capture Efficiency

Ultra-high probe density for higher capture efficiency.

Multidimensional Analysis

Supporting analysis at multiple resolutions (5 μ m ~ 100 μ m).

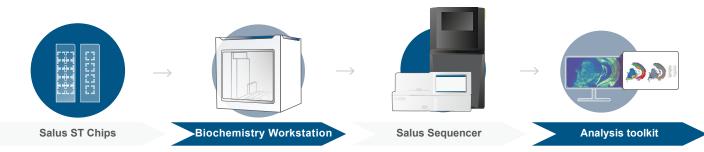
High Throughput

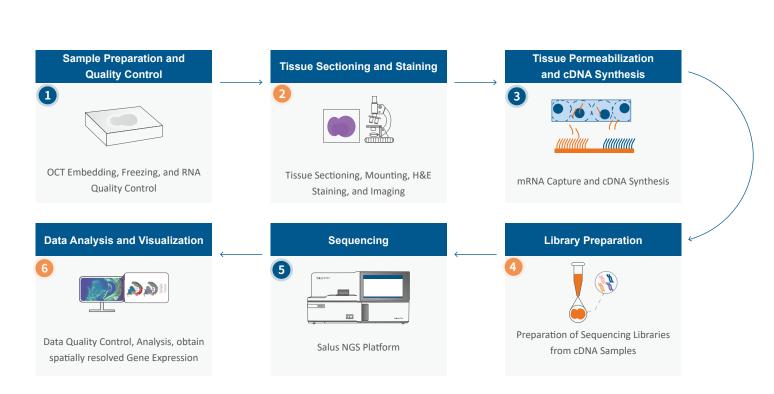
The more transcript information captured from tissue sections, the greater the benefit for detecting new and low abundant transcripts.

Easy to use

With Salus tissue biochemistry workstation, the whole experiment process can be automated, stanadrdized and efficient.

Large Tissue Research

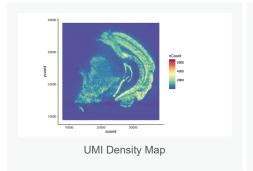

The capture area can be expanded to 70*70 mm², making it easier for the overall study on larger tissues.

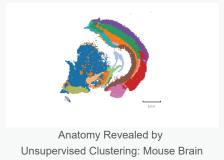


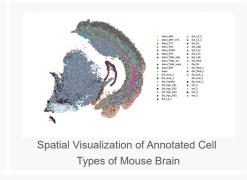
Customizable Probes

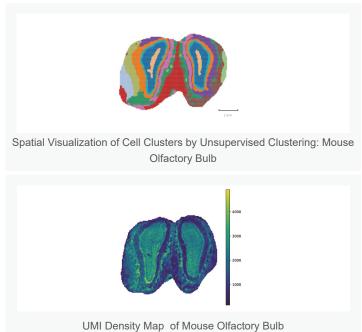
Supporting H&E staining, non-targeted capture and targeted capture, and is compatible with a variety of species and tissue types.

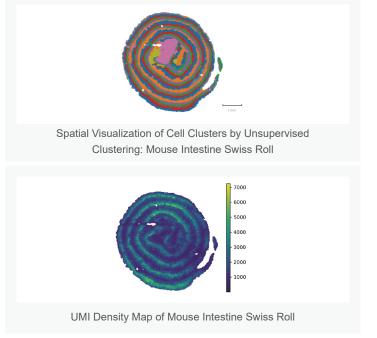
Salus Spatial Transcriptomic Solution

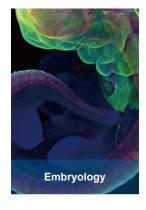


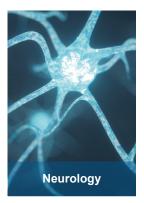

Salus Spatial Transcriptomic Solution




Data Demonstrations


Spatially resolved gene expression and cell clustering for mouse brain, olfactory bulb and intestine swiss roll samples (in 25 μ m bins as an example).





Research Areas

Spatial transcriptomic technology enables researchers to explore into cell-cell interactions at the molecular level, facilitating new biological discoveries. This technology can be applied in tumor research, embryonic tissue development, neurobiology, molecular pathology, immunology and emerging fields.

Specifications

Size	8.6 mm × 8.6 mm × 10; 11 mm × 11 mm × 4
Diameter of the spot	0.8 µm
Center to center (resolution)	~1.4 µm
Number of spots / 100 X 100 μm^2	5,000
Number of probes / μm²	18,000±3,000
Bin analysis	5 μm ~ 100 μm
Capture method	Non-targeted and targeted capture
Species	Human, animals and plants
Sample type	Fresh frozen tissue (FF)

After-sale service

Salus Biomed or its authorised partners provide after-sale service, including operation training and technical support .

Salus Biomed

Empower and Cooperate

Salus Biomed was founded in Shenzhen, focusing on the development of high throughput genetic sequencing platform, and creating world's leading spatial omics research platform. The company is committed to the independent development of genomics and spatial genomics products, as well as translating research into clinical applications.

