

# Saluseq Nimbo Strike Fast & Hit the Target



## Saluseq Nimbo Low Throughput NGS Platfrom

Salus BioMed is dedicated to delivering a superior next-generation sequencing (NGS) platform to empower users in life science industry. By leveraging the sequencing-by-synthesis (SBS) principles, Saluseq Nimbo integrates multiple technical advancements such as larger optical, rapid chemistry systems and highdensity chip design, enabling the fastest sequencing time of 3.4 hours. Featuring fast, accurate, comprehensive and intelligent, the innovative platform is engineered to excel across multiple clinical and scientific research scenarios, including personalized diagnosis, NIPT, forensics, eDNA, targeted NGS, infectious detection, etc.



#### **Key Features**



## **Specifications**

| Sequencing Reagent Set | Read Length | Data Output | Time    | Q30   |
|------------------------|-------------|-------------|---------|-------|
| 20 M                   | SE 400      | 8.0 Gb      | 20 hr   | ≥ 80% |
| 20 M                   | PE 300      | 12.0 Gb     | 28 hr   | ≥ 80% |
|                        | SE 50       | 1.2 Gb      | 3.4 hr  | ≥ 90% |
| 25 M                   | SE 75       | 1.8 Gb      | 4.1 hr  | ≥ 90% |
| 2311                   | SE 100      | 2.5 Gb      | 4.7 hr  | ≥ 85% |
|                        | PE 150      | 7.5 Gb      | 10.9 hr | ≥ 85% |
|                        | SE 50       | 3.0 Gb      | 3.8 hr  | ≥ 90% |
|                        | SE 75       | 4.5 Gb      | 4.6 hr  | ≥ 90% |
| 60 M                   | SE 100      | 6.0 Gb      | 5.4 hr  | ≥ 85% |
|                        | PE 150      | 18.0 Gb     | 12 hr   | ≥ 85% |

\*The sequencing time is for dual index (8+8); \*The time mentioned above is the theoretical sequencing time; \*Sequencing time and data quality may fluctuate due to the different libraries used.

| Methods                                                     | Applications                                                  | Data Volume<br>/ Sample | Read Length | 20M<br>Samples / Run | 25M<br>Samples / Run | 60M<br>Samples / Run |
|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------|-------------|----------------------|----------------------|----------------------|
| Low-pass Whole<br>Genome Sequencing                         | NIPT                                                          | ~5 M reads              | SE 50       | /                    | 5                    | 12                   |
|                                                             | Targeted Pathogen<br>Sequencing (tNGS)                        | 0.5 M ~ 1 M reads       | SE 50       | /                    | 25 ~ 50              | 60 ~ 120             |
|                                                             | Small Panel for Tumor<br>Companion Diagnostics                | ~1 Gb                   | PE 150      | /                    | 7                    | 18                   |
| Targeted Sequencing<br>(Capture / Multiplex                 | Small Panel for<br>Genetic Diseases<br>(Deafness, Metabolism) | 3 ~ 5 Gb                | PE 150      | /                    | 1 ~ 2                | 3 ~ 6                |
| Amplification)                                              | 16S Sequencing                                                | ~0.5 M reads            | PE 300      | 40                   | /                    | /                    |
|                                                             | Forensic DNA Identification                                   | ~0.5 M reads            | SE 400      | 40                   | /                    | /                    |
| Small Genomes Sequencing<br>(Tuberculosis, Tnfluenza, etc.) | Bacterial / Virus                                             | ~1 Gb                   | PE 150      | /                    | 7                    | 18                   |
| Methylation Sequencing                                      | Pan-cancer Early Screening                                    | ~1 Gb                   | PE 150      | /                    | 2                    | 4                    |

\*The number of samples is estimated after careful consideration of library pooling bias and is for reference only.

## Data Demostrations

### Reference Standard - Zymo sample metagenomic sequencing

#### Sample: Metagenomic Standards (Zymo Research)

| Sample             | mNGS-01 | mNGS-02 | mNGS-03 | mNGS-04 | mNGS-05 | mNGS-06 | mNGS-07 | mNGS-08 | mNGS-09 | mNGS-10 | mNGS-11 | mNGS-12 |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| TotalReads(M)      | 20.21   | 20.70   | 17.35   | 16.13   | 18.97   | 19.43   | 18.37   | 17.71   | 19.44   | 18.63   | 17.35   | 19.51   |
| Q20(%)             | 99.50   | 99.47   | 99.48   | 99.29   | 99.43   | 99.46   | 99.43   | 99.37   | 99.39   | 99.43   | 99.32   | 99.44   |
| Q30(%)             | 94.85   | 94.68   | 94.76   | 93.92   | 94.47   | 94.58   | 94.43   | 94.19   | 94.16   | 94.52   | 94.03   | 94.44   |
| Host_Proportion(%) | 0       | 0       | 0       | 90      | 90      | 90      | 99      | 99      | 99      | 99.9    | 99.9    | 99.9    |
| Zymo_Proportion(%) | 100     | 100     | 100     | 10      | 10      | 10      | 1       | 1       | 1       | 0.1     | 0.1     | 0.1     |

Q30 between each run are larger than 94%



The data output between runs is greater than 70M; data splitting rate > 98%  $\,$ 



\*The Q30 of the three runs was greater than 94%, and the data homogeneity between different runs was good. \*All the targets in different proportion samples were detected, and the abundance was consistent with the standard.

### Index Hopping < 0.000344%

| Sample_id                     | Total_reads | DU-6  | DU-10 | DU-64 | DU-12 | DU-20 | DU-22 | DU-32 | DU-56 | DU-2  | DU-28 | DU-29 | DU-35 | DU-43 | DU-7  |
|-------------------------------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Raw_total_reads<br>(M)        | 68.87       | 1.66  | 2.08  | 4.57  | 2.56  | 1.28  | 7.05  | 3.30  | 4.02  | 5.24  | 6.07  | 4.91  | 12.67 | 7.35  | 6.10  |
| Raw_Q30 (%)                   | 93.83       | 93.12 | 95.08 | 93.64 | 94.42 | 95.24 | 93.50 | 92.00 | 93.18 | 94.49 | 93.61 | 94.51 | 93.34 | 93.98 | 93.49 |
| Clean_total_<br>reads(M)      | 63.38       | 1.53  | 2.00  | 4.18  | 2.44  | 1.21  | 6.64  | 2.96  | 3.20  | 5.01  | 5.65  | 4.45  | 11.79 | 6.58  | 5.75  |
| Clean_total_<br>reads_rate(%) | 92.04       | 91.80 | 95.85 | 91.46 | 95.38 | 94.56 | 94.13 | 89.67 | 79.72 | 95.64 | 93.09 | 90.46 | 93.07 | 89.45 | 94.27 |
| Clean_Q30 (%)                 | 96.01       | 96.06 | 96.47 | 95.61 | 96.14 | 96.71 | 95.78 | 95.66 | 96.07 | 96.16 | 95.65 | 96.29 | 95.62 | 96.05 | 95.91 |

| Sample_id                           | Total_reads | DU-6  | DU-10  | DU-64  | DU-12  | DU-20 | DU-22  | DU-32  | DU-56   | DU-2 | DU-28 | DU-29 | DU-35 | DU-43 | DU-7 | Hop_reads | Hop_rate<br>(ppm) |
|-------------------------------------|-------------|-------|--------|--------|--------|-------|--------|--------|---------|------|-------|-------|-------|-------|------|-----------|-------------------|
| All_reads<br>(rm Host reads)        | 4216904     | 98880 | 309881 | 235272 | 174180 | 29882 | 713633 | 391077 | 2201174 | 8420 | 7506  | 10629 | 14508 | 15537 | 6325 | -         | -                 |
| Mapped_reads<br>(MapQ=60;<br>rmdup) | 2324250     | 78025 | 249    | 60969  | 95781  | 18155 | 411174 | 266409 | 1393480 | 3    | 1     | 0     | 1     | 2     | 1    | 8         | 3.44              |
| Klebsiella<br>pneumoniae            | 85156       | 77979 | 241    | 69     | 0      | 0     | 28     | 2737   | 4102    | 0    | 0     | 0     | 0     | 0     | 0    | 0         | 0.00              |
| Corynebacterium<br>resistens        | 63386       | 0     | 0      | 59865  | 15     | 0     | 174    | 3332   | 0       | 0    | 0     | 0     | 0     | 0     | 0    | 0         | 0.00              |
| Pneumocystis<br>jirovecii           | 95775       | 0     | 0      | 1      | 95751  | 0     | 5      | 3      | 15      | 0    | 0     | 0     | 0     | 0     | 0    | 0         | 0.00              |
| Staphylococcus<br>aureus            | 18731       | 0     | 2      | 424    | 10     | 18155 | 76     | 12     | 52      | 0    | 0     | 0     | 0     | 0     | 0    | 0         | 0.00              |
| Pseudomonas<br>aeruginosa           | 397530      | 0     | 5      | 0      | 4      | 0     | 396142 | 0      | 1372    | 2    | 1     | 0     | 1     | 2     | 1    | 7         | 17.61             |
| Corynebacterium<br>striatum         | 275499      | 0     | 0      | 570    | 1      | 0     | 14615  | 260313 | 0       | 0    | 0     | 0     | 0     | 0     | 0    | 0         | 0.00              |
| Enterobacter<br>hormaechei          | 1388173     | 46    | 1      | 40     | 0      | 0     | 134    | 12     | 1387939 | 1    | 0     | 0     | 0     | 0     | 0    | 1         | 0.72              |

## Reference Standard - UHRR sample transcriptome sequencing

Test sample: RNA library constructed based on Universal Human Reference RNA (UHRR) standard v1ad

| Platform               | S       | aluseq Nimb | 0       |         | N Platform |         | Comparison of Annotation Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|------------------------|---------|-------------|---------|---------|------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Sample                 | mRNA1_1 | mRNA1_2     | mRNA1_3 | mRNA1_1 | mRNA1_2    | mRNA1_3 | Stacked Bar Plot of RNA Sequencing Data (Percentage) Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NO -           |
| Raw_total_Reads(M)     | 70      | 70          | 70      | 70      | 70         | 70      | MGEacy84A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500 ·          |
| Clean_Q30(%)           | 94.29   | 93.79       | 94.15   | 93.38   | 93.10      | 93.63   | тті (р. 116)<br>1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 1753 - 17 | 8 300<br>200 - |
| GC_content(%)          | 49.97   | 49.97       | 50.08   | 49.84   | 49.84      | 50.28   | MOEnyMAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 <b>1</b>   |
| rRNA_Rate(%)           | 0.68    | 0.68        | 0.68    | 3.05    | 3.02       | 3.04    | - Christen    |                |
| Mapping_Rate_Genome(%) | 98.86   | 98.91       | 98.97   | 97.25   | 97.13      | 97.62   | U993 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 700 -<br>600 - |
| Mapping_Rate_mRNA(%)   | 92.78   | 92.81       | 92.90   | 85.27   | 84.44      | 84.76   | 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500<br>400     |
| Transcript_Number(K)   | 49.02   | 48.81       | 48.76   | 48.29   | 48.37      | 48.21   | 16981 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Total_Gene_Number(K)   | 16.23   | 16.21       | 16.20   | 16.28   | 16.25      | 16.25   | 0 20 40 40 80 100<br>Recentación                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |



\*FPKM correlation>99%

## **Tech Innovations**

R&D capabilities



100% larger field of view and 50% less imaging time



Robustness and better reaction efficiency



Read length up to SE 400 with better quality



Proprietary dyes systems to optimized for better imaging performance



In fast sequencing mode, the SE 50 + 8 + 8 test can be completed in as fast as 3.4 hours

## **Multiple Applications**



## Saluseq Nimbo Instrument Specifications

| Parameter                  | Specifications |                                     |  |  |  |  |  |
|----------------------------|----------------|-------------------------------------|--|--|--|--|--|
| Dimensions                 | 619 mm(W) >    | x 682 mm(D) x 738 mm(H)             |  |  |  |  |  |
| Weigh                      |                | 115 Kg                              |  |  |  |  |  |
|                            | Input voltage  | 100 V - 240 V~                      |  |  |  |  |  |
| Dower Requirements         | Frequency      | 50 / 60 Hz                          |  |  |  |  |  |
| Power Requirements         | Power          | 1000 VA                             |  |  |  |  |  |
|                            | Fuse           | T10AH250V                           |  |  |  |  |  |
|                            | Display        | 13.3 inch                           |  |  |  |  |  |
| Instrument Configuration   | Resolution     | 1920 x 1080                         |  |  |  |  |  |
|                            | Temperature    | 15°C ~ 30°C                         |  |  |  |  |  |
| Operating Environment      | Humidity       | 20%RH ~ 80%RH (No condensation)     |  |  |  |  |  |
|                            | Altitude       | ≤ 3000m                             |  |  |  |  |  |
|                            | CPU            | 12th Gen Intel(R) Core(TM) i9-12900 |  |  |  |  |  |
| Instrument Control Compute | Storage        | 64GB DDR5                           |  |  |  |  |  |
|                            | Memory         | 2TB SSD                             |  |  |  |  |  |
| OS                         | Windows 11 X64 |                                     |  |  |  |  |  |

## After-sale Service 400-80-SALUS(72587)

Salus BioMed or its authorized partners offer comprehensive after-sales services, including installation, commissioning, repairs, maintenance, technical support, and any other necessary assistance.

Free installation, commissioning, reagents and consumables for performance validation are available. The company reserved all the rights for final explanation.

# Sequencer Safety

The products comply with IEC6010-2010, IEC6010-2010 / AMD /:2016, IEC61010-2010: 2019, and IEC61010-2-081-2019. Featuring a rounded shape design, Saluseq Nimbo is user-friendly for researchers and operators, significantly reducing the risk of scratching.

Crafted from flame-retardant and environmentally friendly materials, our instruments are designed for easy cleaning and sterilzation with alcohol.

## Salus BioMed

#### **Empower and Cooperate**

Founded in Shenzhen, Salus BioMed specializes in developing high-throughput genetic sequencing platforms and is a world leader in high resolution spatial omics research platforms, serving both research and clinical applications. The company is dedicated to providing a wide range of cutting-edge instruments and solutions to the sequencing and life sciences industry.





Shenzhen Salus BioMed Co., Ltd.

+86 755 2374 5832

info@salus-bio.com

www.salus-bio.com